您当前的位置:IT头条网要闻正文

联想之星合伙人刘维:深度布局智能机器六年的行业判断

放大字体  缩小字体 2017-09-07 06:00:34  阅读:9579+ 来源:新浪财经 作者:郝菲尔

  请用两句话分别介绍你自己以及你的机构。

  我是联想之星合伙人刘维,从 2003年 到现在做了 13年 的早期投资人;此前创过两次业,也一个前沿技术爱好者,2002年 在剑桥就搞了一个 “2020 俱乐部” 讨论未来技术,2004年 就投资过机器人的项目,可以说智能技术领域有小 15年 了,一直愿意冒风险去投真正能改变未来的前沿技术。

  联想之星特点就是前沿投资 + 深度孵化,因为联想控股的大体系能够有实力支持我们去布局前沿、改变未来,不用赚短期的钱。我们两期基金加起来有 15 亿人民币规模,因此我们要做的就是 “创业者身边的超级天使”,用 VC 的体量做天使,专注、深度支持、也愿意投高估值但有实力的项目。

  在过去的几个月里,你们都投了哪些案子,选择的原因是什么?

  今年以来大概发出 TermSheet 的项目有 20 多个,涉及行业大数据、智能教育等领域,国内的一些案例现在还不方便说。不过在美国刚刚投了一个低成本月球飞船项目,听起来像是天方夜谭,但是代表了我们投资逻辑——1,需求一直存在,观测实验之类的都会用到地月运输,只是成本太高;2,技术变革带来新机遇,包括传输、图像处理、飞行控制等用得上前沿技术。3,团队也是典型的美国资深专家。

  在上个季度的投资过程中,你们感觉整体投资市场情况如何?如果用 1-10 分衡量机构整体投资意向的话,你们的判断是多少分?为什么?

  我们感觉还是在进行热点转换,大家都说好像有 “变冷”,但其实还是热点在转换。比如,很明显 AI 这种东西一下子热起来了,个人感觉行业很快就会过热,大家普遍看的是水面以上的东西,比如机器人、消费级的,就像当年智能硬件的手环一样,很可能泡沫会破,还是需要深入。所以,大家投网红也好,投人工智能也好,都是在找兴奋点,在证明自己判断是对的。

  过去几个月整体的投资热度在 5、6 分的样子,比较冷。没有打到 3、4 分是因为还是有新的主题出来。虽然现在新主题已经炒得比较热了,但是受后续估值、退出的影响,出手的还是少。

  我们自己还是一直积极,不受市场影响,我们有自己的节奏和系统打法,去年特别热的时候也没有专门加大力度,O2O、P2P,都没怎么抢,现在也不会特意冷下来。

  这段时间里,感觉哪些创业领域比较受资本?你们分析原因是什么?

  还是大人工智能以及 2B 领域。这些领域结合起来看,就是我们一直在说的 “企业智能化和数字化”。2B 上一波的机会在信息化,现在是智能化和数据化,包括提供企业的消费者洞察、企业对自身供应链的优化、自身业务流程的智能化改造等,在这里面人工智能将发挥核心作用。

  这个领域最终要起到很大的量需要一定的时间,但是已经在一步一步得到认可,比如我们投的 Weft,部署在每个集装箱里,实时分析全球航运业的数据,已经渐渐成为市场标配,并逐渐迈向更智能的数据分析应用。

  还有一个热点是我们称之为 “后人工智能”,也就是人都被机器解放了之后,接下来就是消费升级、个性化消费、文化娱乐的机会。开玩笑的说就是所谓 “保暖” 之后 “思** ” 的东西,大家也都在布局。

  介绍一个下一阶段你们自身准备重点投资的领域,选择的原因是什么?

  其实联想之星一直在喊的是智能机器。它不是简单的人工智能,也是不是机器人,是智能和广义的机器的结合,包括汽车、飞机,也包括人型的机器人,还有智能城市,智能摄像头,智能的一个工业设备等等。我们从 2011年 开始到现在转眼五年,一直在投这个领域。

  这一大波的机会不是凭空出现的。人工智能的水平提升之后,机器对物理世界感知的柔性大大地提升了。过去五年,我们的更多是人工智能的底层技术,如何理解命令、理解人机交互,也投了一些传感器之类的技术,包括激光雷达。现在,这些技术渐渐成熟并且在一些领域落地,在行业应用层面就出现了机会。

  我们一方面乐观的看,未来这几年数据循环将会逐渐加快,好的项目会发展更快。比如我们天使轮投的 Face++ 把静态的人脸识别从没有到做出来、做到世界领先用了三年。然后把动态的人脸识别做到领先用了大概一年多。以此为基础,这过去的半年多它们做手写体识别、图象识别、物品识别这些机器视觉就只用了大概半年的时间,就能把这些品类做到世界领先,因为这实际上是数据不断地积累,速度会越来越快。

  但是反过来,其实这个过程还是挺艰巨的。现在起来的这一拨公司,毕竟都是技术驱动的项目,而不是说简单的做个产品、有一个风潮就能起来,其实前期扎实建设的过程还是挺长的。

  在智能机器领域里,你们看好哪些模式?觉得什么样的公司比较有机会?哪些你们可能不会投?

  应该说我们在智能机器领域的布局走过了两个阶段。第一阶段我们在布局底层技术,各种底层技术项目加起来至少得有二十个公司,前几年重点投了一些各种识别和理解技术、传感器、底层云平台,例如 Face++、思必驰、中科虹霸、Ablecloud、Airmap、好买衣这类的公司。

  现在这个阶段,我们加大对智能机器+行业应用的布局力度,利用智能技术去提高行业效率。

  原因在于,过去的机器,有一些电子的功能、一些自动控制的功能、能对有限的场景进行响应,但是没有办法做到非常高的柔性,导致对人工的替代只能做到一小部分。现在随着技术的发展机器柔性提高,在很多领域就会有大量的应用。

  比如农业、物流这些都是特别典型的。原来这些行业都是在最后的、很标准化的环节有一些大规模的机器,成本很高而且比较僵化。但现在因为图像识别技术的发展,机器视觉在快速的提升。比如农业上你能更好地去感知一个苹果的大小和位置,去采摘,物流上货架上的一袋薯片,本来因为柔软不规则无法识别,需要复杂的预处理,现在都可以被智能机器直接处理。而机器在理解农场卫星图片、动态规划线路等智能方面的巨大优势也将在再下一步发挥出来。

  机器变得更加聪明了之后,以往人力成本比较密集的行业就有了人机混合的机会。我们的观点是,现在想指望发明一个机器人或者智能机器,去完全替代人是不明智的,因为实际上很多事做到 90%容易,做到 100%是非常非常难的,而机器的特点还是在大批量的、能专业化分工的事情。所以我们比较明确地锁定了农业、物流、建筑、安防、养老和健康、零售这人力密集的几个行业,机会在于更好的人机混合,更好的分工带来的效率提升。

  好团队一方面需要技术人才,另一方面看好对行业认知深的、有大格局判断的创业者,总体而言需要有一个优势长轴来撬动,其他的我们可以提供支持。

  不太看好的则是 “大而全” 的模式,一上来业务覆盖的范围就太泛,真正要都做好是很难的,而在这个领域如果做不到顶尖竞争力就很小。

  你们怎么理解行业的痛点和难点所在?创新又会从何处产生?

  这就是我想说的这个领域的一个特殊性,就是我们说人工智能、智能机器前景很好,但它的创业艰难程度比传统的互联网领域要高很多。首先要 “做出来”,然后要 “卖出去”,二者都很复杂。

  从做的角度讲,你得整合很多人工智能的底层技术、整合很多机器技术,而且不光是国内整合,很多东西可能要用一些全球最好的技术,才能使你这一代产品的设计不落后,具有领先性,而领先的东西往往又不成熟,所以你怎么去找、怎么去识别、怎么去管理?这还不像咱们原来说的智能硬件比如手环,主要是整合供应链,智能机器更多的是对先进技术整合,一个创业者到底能了解到什么程度?

  在卖出去这点上,就更加残酷。因为任何一个具体的公司,都需要对行业的需求有深入的了解,如果你选错了切入点,或者在同样一个领域内,你选错了最开始针对的产业场景,或者选错了合作伙伴,那可能就意味着你浪费了很多的时间。举个例子,比如你开发了一个物流机器人,你上来就是针对那种大件、整架托盘级的运输,但实际上现在行业需要的更多是散货、超市货架抓取的技术,那其实你这个东西可能做出来之后就没有太大作用,卖就会遇到问题。

  因此我们投资也会特别注意这一点,一方面联想之星的投资是完全全球化的,尤其在美国投了非常多的顶尖技术。另一方面我们也是生态化布局,甚至自建 Comet Labs 这样的人工智能加速器生态,就是为了更好的看清行业需求,找准机会。

  我们还持续前沿技术,创新也正来源于此。新的小火箭、卫星、量子点光谱、进入人体的机器人、智能技术代替传统控制等等都会是方向。例如,最近我们一直积极地看航天领域,其实天空中是一个很好的视角,来为人来带来更多的数据。

  接下来还有哪些值得或者有潜力的创业热点和方向?

  要看大周期里面的具体机会。比如顺着人工智能去寻找,这个时代刚刚开始,这一条道会是 10-20年 的机会。我们有一个喊了几年的口号,“物理世界数字化,数字世界可理解化,理解之后智能化”,从这个角度来理解,现在的进展还太少。

  物理世界数字化还有极大可为,包括针对人体、针对集装箱这样的物体刚开始发展传感器。而有了传感器之后也还有太多东西不能理解,比如行业数据、商品,比如对医疗影像数据的理解,辅助传感器,对人体行为、动作,非静态的东西的分析;因此数字世界的可理解化,也不到百分之一。最后智能化,每一个业务场景的智能训练,都有很长的路要走,比如智能农业,我们认为过几年之后,我们吃的蔬菜可能都是定制,很多都是小单元农业,精准控制,个性化可调控。因此整个板块还有很长很长的空间。

  所以,未来有意思的项目会在于:我们对于新一代的传感器非常感兴趣;此外人工智能时代的计算、存储、安全等新基础设施也会很有机会。还有医疗领域,现在人类对自己身体理解还远远不够,联想之星也在医疗传感器、医疗大数据方面进行持续布局,投资了燃石医学等基因大数据项目,随着技术发展,人体嵌入式小型设备会越来越多,人离医院会越来越远,自动化的诊断、干预、治疗都会是方向。

  谈到机器智能,还有物理世界的数据跟业务场景的结合,有了场景就能训练、标注;再往上一层,推荐智能、智能系统大数据、结构化之后的个性化数据等等都值得,我们投的一大堆个性化项目比如好买衣、作业盒子、学吧课堂等的发力点也在于此。

  回到市场动态方面,如何理解战略新兴板暂停和注册制的推迟?

  传统 IPO 路径会受到影响,但是如果本身项目有价值,其实产业并购、资本市场并购的机会正在增加,一些主业不错、沿着产业做产业基金的上市公司正在出现,上市公司也变得更像资本运作平台。

  因此只要项目本身好,总有办法持续发展。包括新三板、美国上市也还是都有机会。有一些业务短期受到清理,但清理也是为了创造更好的价值。我们自身作为天使,一个 “10+N” 的基金,也不是以短期退出导向的,因此行业更理性之后也是好事。

  在下一阶段,还有什么宏观或微观层面想要提醒创业者的事情?

  要小心泡沫。现在市场上 VR 这样的纯概念已经过热,其实智能是一个挺宽泛的主题,但现在大家的点过窄地定在了在 VR、机器人上,技术不够深或者行业扎根不够深,就有风险。接下来一段时间里,一些扎的不够深的伪技术项目可能会面临泡沫破灭。

  推广:加入新浪创业社群,直通新浪创业专属活动,对接一线投资机构。号sinavc

为你推荐

  • 进博会对话高通钱堃,混合AI是未来,5G-A发挥重要作用

    最近,高通公司全球高级副总裁钱堃在第七届中国国际进口博览会期间接受媒体专访时介…

    数码
  • 从手机到汽车 高通孟樸进博会解读5G+AI推动朋友圈扩展

    11月5日至10日,第七届中国国际进口博览会在上海举办,高通公司中国区董事长孟樸在进…

    数码
  • 小生意,大爆发|八大行业双11策略划重点

    双11大促已迈入正式期,各行业最关注的就是如何差异化抢量,本期通过对美妆、日化、3…

    数码
  • 2024爱企查毕业季校园行:构建诚信就业市场,为成电、广大学子保驾护航

    5月28日至31日,“2024爱企查毕业季校园行活动”先后走进电子科技大学、广州大学。…

    数码
  • 毕业不慌,查厉来帮|爱企查携手西电学子深度体验品牌魅力

      2024爱企查毕业季校园行火热进行中,5月27日至28日,爱企查走进西安电子科技大学…

    数码
  • “如果发现本网站发布的资讯影响到您的版权,可以联系本站!同时欢迎来本站投稿!