您当前的位置:IT头条网要闻正文

中国科学家搞了大事情:让酵母菌在无限可能中"成长"

放大字体  缩小字体 2017-10-11 13:36:55  阅读:7392+ 来源:新浪科技 作者:贾静雯

  来源:科学人

  原标题:中国科学家们搞了个大事情,让酵母菌在无限的可能中找到更好的自己……

  上个月,叫兽君的朋友圈被一则“中国科学家再造人工合成生命”的新闻刷屏了。该报道称,中国科学家以“史无前例”的姿态,用封面文章的形式,在顶级期刊《科学》杂志上同时发表了4篇论文。论文称科学家们从头编写了一种真核生命——酿酒酵母的DNA,从而创造了人造的真核生命

图1。《Science》专刊封面。那些长得像草又像蘑菇的棒状物是酵母的染色体,而那些金色的部分是人工合成的染色体。人工合成的染色体结构和遗传信息与天然的染色体相似,例如我们都可以看到一圈圈缠绕在一起的像电话线一样的DNA。图片来源于《science》杂志

  得知此消息的朋友们纷纷跑来向我求证,说这回中国科学家又搞了个大新闻啊,连合成生命都开始搞了?这个人造的酵母到底有啥用啊?甚至有人感到了恐慌——这次搞了个酵母,下回是不是要做人造人了?当然,也有好多人问我要人工合成生命女神的电话…

“人造生命女神”、2号染色体合成文章第一作者,华大基因合成与编辑平台负责人沈玥博士和她的小伙伴们

  大新闻是咋回事?

  这次报道的主角——人工合成酵母基因组项目(Sc 2.0项目),旨在重新设计合成一个真核单细胞微生物——酵母的16对染色体,即合成世上首例人造酵母。这个项目是由杰夫·博克(Jef Boeke)教授发起,多国团队共同参与的国际项目。截止目前,科学家们一共合成了16对目标染色体中的6对半。这次《科学》杂志以专刊形式报道的就是其中5条合成染色体的最新研究进展。专刊中有4篇文章是中国科学家的工作成果,说明中国在合成生命的科研领域已经走在了世界的最前列。此处应真心的为中国的科学团队点赞!

图2。迄今为止人类已合成的酵母染色体示意图。左边是用合成酵母和野生酵母菌落画出来的染色体示意图,金色的是含合成DNA的酵母菌落,蓝色则是野生的。大家数一数,看看现在有多少条是合成了的,多少条是还没合成的?图片来源于《science》杂志

  科学家是直接合成出一个酵母吗?

  很遗憾,由于细胞的成分结构太复杂,科学家还无法通过化学方法直接合成出细胞的全部成分。但是没关系,也没有必要重新合成那么多复杂的东西。有更简单直接的办法——合成操纵着生命核心密码的DNA。首先,科学家们用电脑程序重新设计了酵母菌的DNA序列,然后通过化学合成的方式合成出寡核苷酸链(就是超级短的DNA)。因为化学合成越长的DNA越容易出错,成本很高,穷苦的科学家们hold不住啊。所以只能先合成短的DNA,再像拼积木一样拼接出长的DNA。你问为什么不直接化学合成全部DNA?我只能告诉你…

  完成这一步之后,再把酵母体内天然的DNA替换为合成的DNA,就算完成了人造生命。当然,现在我们只完成了一部分染色体的合成,等16对染色体全部合成完毕,将它们整合进一个酵母中,形成完整的“人造基因组”,才能最终诞生真正意义上的人造酵母。

图3。 人造酵母染色体合成流程示意图。首先使用化学合成方法合成一系列长度60-80个碱基对的寡核苷酸链。由于相邻的寡核苷酸链被设计为部分重叠互补,可以使用PCR反应将这些寡核苷酸链组装成750个碱基对长度的building block。将buildingblock导入酵母中,利用酵母的同源重组能力将building block组装成2-4千个碱基对长的minichunk。再将minichunk放到同一个酵母中,再次利用酵母的同源重组能力,将天然的DNA逐步替换为合成的DNA。对于每个合成的染色体,具体的方法有所差异与创新,但大体思路相同。有兴趣的小伙伴可以阅读文献中的方法。图片引用自:Annaluru,N。, Muller, H。, Mitchell, L。 A。, Ramalingam, S。, Stracquadanio, G。, Richardson,S。 M。, 。 。 。 Chandrasegaran, S。 (2014)。 Total Synthesisof a Functional Designer Eukaryotic Chromosome。 Science, 344(6179), 55-58.doi:10.1126/science.1249252

  人造酵母和天然的酵母有啥区别?

  很多人可能会想,既然咱们能创造生命,是不是想造啥就造啥了?对于这样的问题,我只能默默流泪:生命的机制非常的复杂,科学家还远没有弄懂它的作用机制。因此,人造酵母的设计和构建还得参照自然界的酵母,而且,也得保证合成的酵母能表现出与天然的酵母相似的功能。

  那么,人造酵母和自然界的酵母真的没有区别吗?当然不是,在尽量模拟自然界酵母的基础上,科学家们在合成的DNA上做了一些细微但重要的改变。例如,科学家们去除了DNA上一些他们认为无用累赘的序列,作了一些遗传密码的同义改写,并在基因上加入了一个“进化开关”,给每个合成酵母一次进化的机会。科学家们通过引入一种叫做SCRaMbLE的进化系统(图4),在经过诱导之后,能使每个酵母细胞的全部基因像洗牌一样发生一次随机的重新排列。这就给人工合成的酵母菌带来了无限的可能,让酵母菌在这无限的可能中找到更好的自己。

图4 SCRaMbLE 系统示意图。SCRaMbLE的全称是Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution,能够像洗牌一样随机打散染色体上所有基因的排列布局。图中绿色的菱形就是“进化开关”,诱导之后染色体会随机发生重排、删除等变异,变异出不同的酵母。图片引用自:Dymond, J。, & Boeke,J。 (2012)。 The Saccharomyces cerevisiae SCRaMbLE system and genomeminimization。 Bioengineered Bugs, 3(3), 168-171。 doi:10.4161/bbug.19543

  合成的酵母有什么用?

  说了这么多,那合成这样一个人造酵母有什么用呢?首先,合成酵母最直接的作用就是让人类更好的认知生命。大家可能觉得基因组学和分子生物学发展的那么迅猛,科学家们应该很了解生命了,那么按图索骥的合成一个生命应该也没什么难度。但是生命的复杂性就像女朋友的心,你以为你对她很了解,但是当你给她买口红的时候,你才发现…

  了解生命对于科学家来说就像了解女朋友,不敢说我们对她的了解一定是正确的——只有当合成生命按照我们预想的方式运作时,才能证明我们对生命的认识无误。因此,科学家才期待通过研究人造酵母,找出更多与天然酵母不同的地方,从而更好的了解女朋友的本质。

(科普就科普,为什么一言不合就撒狗粮T-T)

  其次,合成的酵母菌本身也有巨大的应用潜力。人类已经利用酵母做了几千年的啤酒、面包和馒头,在基因工程技术的帮助下,可以利用改造的酵母做更多的事情,例如生产抗体、靶向药物、酵素(酶)、味精等等。这里不得不提到诺贝尔奖的明星——青蒿素。2013年,杰伊·凯斯林(Jay Keasling)等人在酵母体内加入一系列基因,使其获得青蒿素前体的合成能力,产量高达惊人的25g/L,大大降低了青蒿素的生产成本,提高了生产效率。利用类似的思路,科学家可以将人造酵母打造成一个“细胞工厂”,可以用来生产香水、合成药物、生产清洁的能源物质,甚至带来更多超越想象的新应用,更好的为人类服务。

  最后,酵母菌的合成本身就是一种科学技术的突破。科学家从合成最简单的病毒开始,到支原体菌,再到酵母菌,一步步克服了大小和复杂程度上质的区别。就像制造黑白手机、彩屏手机和智能手机一样,经过了一个又一个软件和硬件突破原有技术障碍、逐步升级的过程。掌握了酵母菌的合成技术,合成更高等的生命也就不再是梦想了。

  酵母造完了,还有人造人吗?

  从古至今,创造生命就是一个人们津津乐道又争议不断的话题。在各民族的神话里,创造生命都是神灵的工作。然而,从合成病毒到合成原核微生物再到正在合成的人造酵母,这些曾经遥不可及的神话如今却逐渐成为现实。当人类破译更多真菌、植物,以及动物的遗传密码,可能,在不远的将来,合成第一棵人造植物,第一只人造萌宠,甚至人造人都会成为可能。但是,合成生物学的飞速发展也带来了伦理和生命安全上的隐忧。如同所有科技都拥有两个面,人造生命既能成为对人类有益的“细胞工厂”,也可能被利用来生产具有潜在危害的物质。如何监管这样的合成生命,维护人类的安全也是一个沉重但不容忽视的话题。

  人造生命是一条充满希望又饱受争议的荆棘之路。叫兽君认为,不管争议如何,科学家对于合成生命的探索应当在合理的规范和监管之下,一往无前的继续走下去。很期待合成酵母之后,不远的将来能够看到更多有趣的合成生命诞生。

  编辑:明天

  排版:晓岚

  题图来源:123RF

  参考文献:

  1.Annaluru, N。,Muller, H。, Mitchell, L。 A。, Ramalingam, S。, Stracquadanio, G。, Richardson, S.M。, 。 。 。 Chandrasegaran, S。 (2014)。 Total Synthesis of a Functional DesignerEukaryotic Chromosome。 Science, 344(6179), 55-58。 doi:10.1126/science.1249252

  2.Cello, J。,Paul, A。 V。, & Wimmer, E。 (2002)。 Chemical synthesis of poliovirus cDNA:generation of infectious virus in the absence of natural template。 Science,297(5583), 1016-1018。 doi:10.1126/science.1072266

  3.Dymond, J。,& Boeke, J。 (2012)。 The Saccharomyces cerevisiae SCRaMbLE system and genomeminimization。 Bioengineered Bugs, 3(3), 168。

  4.Dymond, J。 S。,Richardson, S。 M。, Coombes, C。 E。, Babatz, T。, Muller, H。, Annaluru, N。, 。 。 。Boeke, J。 D。 (2011)。 Synthetic chromosome arms function in yeast and generatephenotypic diversity by design。 Nature, 477(7365), 471-476.doi:10.1038/nature10403

  5.Gibson, D。 G。,Glass, J。 I。, Lartigue, C。, Noskov, V。 N。, Chuang, R。 Y。, Algire, M。 A。, 。 。 。Venter, J。 C。 (2010)。 Creation of a bacterial cell controlled by a chemicallysynthesized genome。 Science, 329(5987), 52-56。 doi:10.1126/science.1190719

  6.Hutchison, C.A。, Chuang, R。-Y。, Noskov, V。 N。, Assad-Garcia, N。, Deerinck, T。 J。, Ellisman,M。 H。, 。 。 。 Venter, J。 C。 (2016)。 Design and synthesis of a minimal bacterialgenome。 Science, 351(6280)。 doi:10.1126/science.aad6253

  7.Jackson, D。 A。,Symons, R。 H。, & Berg, P。 (1972)。 Biochemical Method for Inserting NewGenetic Information into DNA of Simian Virus 40: Circular SV40 DNA MoleculesContaining Lambda Phage Genes and the Galactose Operon of Escherichia coli.Proc Natl Acad Sci U S A, 69(10), 2904-2909。

  8.Mercy, G。,Mozziconacci, J。, Scolari, V。 F。, Yang, K。, Zhao, G。, Thierry, A。, 。 。 。Koszul, R。 (2017)。 3D organization of synthetic and scrambled chromosomes.Science, 355(6329)。 doi:10.1126/science.aaf4597

  9.Mitchell, L.A。, Wang, A。, Stracquadanio, G。, Kuang, Z。, Wang, X。, Yang, K。, 。 。 。 Boeke, J.D。 (2017)。 Synthesis, debugging, and effects of synthetic chromosomeconsolidation: synVI and beyond。 Science, 355(6329)。 doi:10.1126/science.aaf4831

  10.Paddon, C。 J。,Westfall, P。 J。, Pitera, D。 J。, Benjamin, K。, Fisher, K。, McPhee, D。, 。 。 。Newman, J。 D。 (2013)。 High-level semi-synthetic production of the potentantimalarial artemisinin。 Nature, 496(7446), 528-532。 doi:10.1038/nature12051

  11.Richardson, S.M。, Mitchell, L。 A。, Stracquadanio, G。, Yang, K。, Dymond, J。 S。, DiCarlo, J.E。, 。 。 。 Bader, J。 S。 (2017)。 Design of a synthetic yeast genome。 Science,355(6329), 1040-1044。 doi:10.1126/science.aaf4557

  12.Shen, Y。,Stracquadanio, G。, Wang, Y。, Yang, K。, Mitchell, L。 A。, Xue, Y。, 。 。 。 Bader,J。 S。 (2016)。 SCRaMbLE generates designed combinatorial stochastic diversity insynthetic chromosomes。 Genome Res, 26(1), 36-49。 doi:10.1101/gr.193433.115

  13.Shen, Y。, Wang,Y。, Chen, T。, Gao, F。, Gong, J。, Abramczyk, D。, 。 。 。 Yang, H。 (2017)。 Deepfunctional analysis of synII, a 770-kilobase synthetic yeast chromosome.Science, 355(6329)。 doi:10.1126/science.aaf4791

  14.Wu, Y。, Li,B。-Z。, Zhao, M。, Mitchell, L。 A。, Xie, Z。-X。, Lin, Q。-H。, 。 。 。 Yuan, Y。-J。(2017)。 Bug mapping and fitness testing of chemically synthesized chromosome X.Science, 355(6329)。 doi:10.1126/science.aaf4706

  15.Xie, Z。-X。, Li,B。-Z。, Mitchell, L。 A。, Wu, Y。, Qi, X。, Jin, Z。, 。 。 。 Yuan, Y。-J。 (2017)。“Perfect” designer chromosome V and behavior of a ring derivative。 Science,355(6329)。 doi:10.1126/science.aaf4704

  16.Zhang, W。,Zhao, G。, Luo, Z。, Lin, Y。, Wang, L。, Guo, Y。, 。 。 。 Dai, J。 (2017)。Engineering the ribosomal DNA in a megabase synthetic chromosome。 Science,355(6329)。 doi:10.1126/science.aaf3981

为你推荐

  • 进博会对话高通钱堃,混合AI是未来,5G-A发挥重要作用

    最近,高通公司全球高级副总裁钱堃在第七届中国国际进口博览会期间接受媒体专访时介…

    数码
  • 从手机到汽车 高通孟樸进博会解读5G+AI推动朋友圈扩展

    11月5日至10日,第七届中国国际进口博览会在上海举办,高通公司中国区董事长孟樸在进…

    数码
  • 小生意,大爆发|八大行业双11策略划重点

    双11大促已迈入正式期,各行业最关注的就是如何差异化抢量,本期通过对美妆、日化、3…

    数码
  • 2024爱企查毕业季校园行:构建诚信就业市场,为成电、广大学子保驾护航

    5月28日至31日,“2024爱企查毕业季校园行活动”先后走进电子科技大学、广州大学。…

    数码
  • 毕业不慌,查厉来帮|爱企查携手西电学子深度体验品牌魅力

      2024爱企查毕业季校园行火热进行中,5月27日至28日,爱企查走进西安电子科技大学…

    数码
  • “如果发现本网站发布的资讯影响到您的版权,可以联系本站!同时欢迎来本站投稿!